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Abstract

I,t this paper, we review some recent work relating farmlie, of trees

to symbolic algorithms for the exact computation of series which ap-

proximate solutions of ordinary differential equations, it turns out that
the vector space whose basis is the set of finite, rooted trees carries a

natural multiplication related to the composition of differential opera-

tors, making the space of trees an algebra. This algebraic structure can

be exploited to yield a variety of algorithms for manipulating vector

fields and the series and algebras they generate.

1 Introduction

In this paper, we review some recent work relating families of trees to sym-

bolic algorithms for the exact computation of series which approximate so-

lutions of ordinary differential equations. It turns out that the vector space

whose basis is the set of finite, rooted trees carries a natural multiplication

related to the composition of differential operators, making the space of trees

an algebra. This algebraic structure can be exploited to yield a variety of

algorithms for manipulating vector fields and the series and algebras they

generate.

In Section a, we introduce and explore the algebraic structure of trees.

Section 4 describes a simplification algorithm for the rewriting of symbolic
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man_uicbert.eecs.uic.edu. This research was supported in part by the grants NASA
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expressions involving vector fields. Section 5 describes an algorithm for

generating explicitly integrable flows associated with nilpotent Lie algebras.
Section 6 exploits the relation between Taylor series and trees to study a

class of intrinsic numerical integrators. We begin in Section 2 with some

background.
The results surveyed here are the work of a variety of mathematicians:

I especially want to mention the contributions of my collaborators Peter

Crouch. Matthew Grayson and Richard Larson. The work on algebras of

trees and its applications to symbolic computation is joint work with Richard

Larson. All of the algorithms described here rest upon this foundation. The

work on explicitly integrable flows and hi[potent Lie algebras is joint work

with Matthew Grayson. The work on numerical algorithms evolving on

groups is joint work with Peter Crouch.

2 Background

Consider a differential equation

Z(t) -- El(Z(t)) -_- U E2(z(t)), z(0) -- z 0 E R N, (1)

where El and E2 are vector fields and u is a parameter. In applications,

u will be either a small perturbation u = e, a control t ---, u(t), or simply

the constant u -- 1. Unless the vector fields El and E2 are very special, no

algorithm is known which will return the general solution to the system in

closed form. Our objective is to find efficient algorithms to compute various

approximate solutions of the differential equation exactly using symbolic

computation.

Although the impact of symbolic computation in this area is recent, the
connection between the existence of closed form solutions and the approxi-

mation of general solutions is a traditional theme, dating back to at least the

the nineteenth century. One can distinguish two approaches. One, cham-

pioned by Lie, is based upon algebra and geometry and concerns us here;

the other, championed by Weirstrass and Poincar_, is based upon complex

function theory. J

Consider a group of transformations acting on R N of the form

_, : zu = f_,(xl,...,zN; sl,..., st), t_ = 1,..., N,

with the property that the group permutes the solutions of the nonlinear

system (1). Lie asked the question [51] and [52], How can information about



the tranformatwn group be used to help integrate the differentzal equatzon?

To answer this question, Lie introduced the infinitesimal generators of the

group

N C0fu 0 I <k <r
= - -

tJ=l

and showed that the Ak satisfy

[A,,A,] = _-_ ck,:A_,

k----I

where [., ] is the commutator, or Lie bracket,

[.4i,,'1:] = A,A_ - A:Ai,

and the c,_j are constants. For example, Lie showed that if there is a one

parameter group of transformations permuting the solutions of a nonlinear

system in the plane (z,t), then the integrating factor for the equation may

be read off from the infinitesimal generator.

Since Lie's time, this basic question has contributed to the development

of a number of different fields:

• The vector fields A 3 generate a filtered Lie algebra, which is usually

infinite dimensional, and is the infinitesimal version of the continu-

ous pseudogroup of transformations generated by the ¢,. Prior work

has focused on the geometry and structure theory of these algebras;

important contributions have been made by Guillemin and Sternberg

[37] and [36], and Ilermann [52], [53], building upon the earlier work

of Cartan, Ehresmann and Spencer.

• Formal sums of iterated powers of vector fields, or Lie series, have

been developed by GrSbner [25], [26] and Knapp and Wanner [46],

[47] into an operational calculus and used to approximate the solu-

tions of differential equations. Lie transform methods have also been

used in perturbation theory by Rand [59] and Meyer [54], in celestial

mechanics by Deprit [18It, and in particle physics by Dragt [20].

• Explicit series computations of solutions of differential equations have

a number of interesting connections with ¢ombinatorics. Chen [13]

makes uses of the shuffle product, Joyal [45], Labeile [49], Leroux [50],

and Viennot [71] employ trees and species, while Rota, Krahaner and

Odlyzko [62] exploit the umbral calculus.



• Ritt and Kolchin, buildingupon earlierwork of Picardand Vessiot,
developedthefieldof differentialGaloistheory.Thegoalis to obtaina
theorydescribingthesolvabilityof differentialequationsanalogousto
Galois'theorydescribingthe solvabilityof algebraicequations.The
surveyby Singer[67] providesa gooddescriptionof this field from
the viewpointof symboliccomputation.Other relevantcontributions
includethebeginningsof a differerentialGr6bnertheory[3], [38],anal-
ogousto the Gr6bnertheory in commutativealgebra;and a Hopfal-
gebraicinterpretationof Picard-Vessiottheoryby Takeuchi[70].

• There is now a resurgenceof interestin using symmetrygroupsto
help integratedifferentialequations.This direction of researchhas
beenactive in the SovietUnion for sometime, but during the past
decadetherehasbeenincreasedinterestin the UnitedStates.Impor-
tant contributionshavebeenmadeby Olver [57],Schwarz[64], and
Blumanand Cole[5]. Closelyrelatedis the study by Caviness[66]of
conservationlawsfor differentialequations.

Duringthe pastseveralyears, there has been increasing interest in sym-

bolic computation and differential equations. Work has proceeded in a num-

ber of directions, and is based upon both the Lie and the Weiistrass and

Poincard traditions:

• Zippel [73] is writing a modular symbolic computation system which

supports the ability to call high quality numerical routines. Using such

a system, he has shown how symbolic algorithms can be used to select

appropriate numerical algorithms.

• Guckenhemier [35] has produced the program kaos which allows the

user to access a variety of algorithms to investigate a differential equa-

tion from the point of view of modern dynamical systems.

• There are a number of programs to compute symmetry groups of differ-

ential equations, including one written by Char [12], and the programs

SODE and SPDE written by Sehwarz [64].

• Abelson and Sussman add their group at MIT [1], [2] have combined

techniques in artificial intelligence to produce software which automat-

ically analyzes the qualitative features of a differential equation.

• Wang [72] and Steinberg [68] have developed systems which use sym-

bolic computation to produce high quality, optimized Fortran code to

solve differential equations.
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Figure 1: The trees associated with the vector fields Ej.

• Della-Dora and Tournier [17] have used the fundamental ideas of Ramis

[58] to produce a system to analyze linear ordinary differential equa-

tions. They are now turning their attention to nonlinear systems.

Point of view. The point of view taken here is to focus on the algorithmic

aspects of the computation of the vector fields A i and their brackets and

to use this i,lformation to develop appropriate algorithms which use exact

symbolic techniques to approximately integrate the trajectories of tile dif-

ferential equation. :ks will become clear, there are a number of interesting

points of contact between this approach and the approaches just described.

In the following sections, we review data structures and algorithms for

the symbolic computation of the flows of vector fields, and for the symbolic

approximation of general flows by flows which can be studied symbolically.

3 Vector fields and the algebra of Cayley trees

In this section, we describe a data structure which is central to the algo-

rithms we give for the symbolic computation of series which approximate

the solutions of differential equations. The basic idea is to assign trees to

vector fields as illustrated in Figure 1, and then to impose a multiplication

on trees which is compatible with the composition of vector fields.
Consider three vector fields

El = aiDt + .. "aNDN, E_ = blDt +." .bNDN,

E3 = Cl Dl +... CN DN

where Di = O/0zl, and ai, bl and ci are smooth functions on R N. Now

z, =Zb (oja,)o, + F_b,a,O,D,

and £'3 • E2 - E1 is equal to

ck( O_bj )( O, ai)Di + _ ckbj(Ok Ojai )Di + _ c_bj(Djai )Dk O_
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Figure 2: The trees associated with Equatton 2.

+ _ c_b,a,D_D,D, + _-_ckbj(Dkai)DjD, + __c_,(Dkbj)a_D,D,. (2)

Here the sum is for i,j, k = 1,..., N and hence involves O(N 3) differentia-

tions. It is convenient to keep track of the terms that arise in this way using

labeled trees: we indicate in Figure 2 the trees that are associated with the

six sums in this expression.

An expression such as

[E3, [E2, Eli] = E3E2EI - E3EIE_ - E2EIE3 + EIE2E3 (3)

gives rise in this fashion to 24 trees corresponding to the 24N 3 differenti-

ations that a naive computation of this expression requires. On the other

hand. 18 of the trees cancel, saving us from computing 18N 3 terms. We

are left with 6N 3 terms of the form (junk)D m. A careful examination of

this correspondence between labeled trees and expressions involving the E,'s

shows that the composition of the vector fields Ei's, viewed as first order

differential operators, corresponds to a multiplication on trees. This multi-

plication is illustrated in Figure 3. It turns out that this construction yields

an algebra, which we call the algebra of Cayley trees.

Here is a more precise description for the specialist, following [27] and

[30]. Let k denote a field of characteristic 0. We say that a finite rooted

tree is labeled with {El,..., EM} in case each node, except for the root, is

assigned a element from this set. Let 127"(E1, ..., EM) denote the set of

labeled trees and let k{_.7"(El, ..., EM)} denote the vector space whose

basis consists of labeled trees in £T(E1, ..., EM) • Suppose that tt,
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Figure 3: An example of multiplying two trees.

t2 E £:7(Et, ..., EM) are trees. Let sl, ..., s, be the children of the root

oft1. [ft2 has n+ l nodes (counting the root), there are (n + I)" ways to

attach the r subtrees of tt which have Sl, ..., s, as roots to the tree t2 by

making each si the child of some node of t_. The product 11t2 is defined

to be the sum of these (n+ 1)" trees. It can be shown that this product is

associative, and that tile trivial tree consisting only of the root is a right and

left unit for this product. In[27], we defineacomultiplicationon k{£7-(Et,

.... E,_I)} and show that

Theorem 3.1 The vector space k{£7"(Et, ..., EM)} with basis allequzva-

lence classes of finite rooted trees is a cocornmulative graded connected Hop.[

algebra.

We call this algebra the algebra of Cayley trees generated by the set of

labeled trees ET"(EI, ..., EM) . The relation between trees and differential

operators goes back to Cayley [8], [9]. The coalgebra structure on this space

is very similar to the coalgebra structure defined by Joni and Rota [44].

tIowever, the coalgebra structure defined there was defined for individual

combinatorial objects, rather than for a class of objects such as the family

of rooted trees. Butcher [6] and [7] has also defined a multiplication on the

vector space which is dual to the space of trees. This multiplication is closely

related to the one just defined.

4 Symbolic evaluation of vector field expressions

When expressions involving vector fields, such as Lie brackets, are written

out in coordinates, there is typically a lot of cancellation. Similar cancel-

lation occurs in expressions involving Poisson brackets and when flows are

concatenated, as in Campbell-Baker-Itausdorf expansions. In this section,

we use the algebra of Cayley trees to exploit this cancellation in order to

compute more efficiently formal expressions involving vector fields.

This is the set up. Let R denote a ring of functions. In applications, R

is usually either the ring of polynomial functions, rational functions, or C °O



functions.Fix severalfirst orderdifferentialoperatorswith coefficientsfrom
R

N

Ej _ " _'= atD., aj E R, j = 1,.. ,M (4)

that are defined in terms of a basis of first order differential operators

0
D.= _, #= 1 .... ,N.

0z,

Simplifying any expression in the Ej's using Equation (4) yields a differential

operator, which we can view as an element of End R.

We now define a homomorphism from the algebra of expressions in the

Ej's to the algebra of trees. Indeed, the assignment in Figure 1 extends to

an algebra homomorphism from the free associate algebra in the symbols Ej

to the algebra of Cayley trees k{ET(E_, ..., EM)} . It is straightforward to

define a downward-pointing arrow so that the following diagram commutes:

k<E1,..., EM> -- k{£']'(El, ..., EM)}

\ t (5)
End R

Algorithm 4.1 To rewrite ezpressions in the first order differential opera-

tors Ej in terms of the basis

0 02
Pi,P_,... = 1,...,N,

Oz.1' OxulOz.2"'"

compute the compos:hon of the r:ghlward and downward pointing arrows in

the diagram above•

In [28], [29] and [33], we show that the algorithm is much more efficient than

naive substitution, which corresponds to computing the diagonal arrow di-

rectly. In some common cases, the improvement in efficiency is exponential.

We have implemented this and related algorithms in Maple, Mathematica

and Snoboi.
• J

We illustrate this algorithm by working the example of the last section

following [31]: consider a higher order derivation of the form

p = EaE2EI - E3E1E2 - E2EIE3 + E1E2E3.

Naive simplification requires computing 24N 3 terms of the form described

in Table 1. The image of p in the algebra of Cayley trees contains 24



No. of terms Form of terms

8N J coeff. D_I

12N 3 coeff. D.2 D.1

4N 3 coeff. D.3 D.2 D._

Table 1: Naive computation of the differential operator corresponding to p.

o o t ite . EE2 - E1 - E1 "+" E2

E3 E3 E2 E1

+

_E3 - (_
E3

Figure 4: The surviving labeled trees.

crees, six for each of the four terms of p. For example, the six labeled trees

corresponding to the first term are given in Figure 2. Eighteen of these

trees cancel, leaving the six trees in Figure 4. The corresponding differential

operator is equal to

- a 3 (D_,,a,)(D._% )D.1

_', _',)(D.2a_I)D., + _ "' ., .,-E% (O,,,,,, a, (D.,a= )(D.2a 3 )D.I

+_ "' "2(D., _', _ (D.,D.2 )0.1% a_ O.2a,)O., E a_'a_" a_'

and contains 18N 3 fewer termslof the form indicated in Table 2 than does

the naive computation of p. An example of the cancellation of labeled trees

is given in Figure 5.

To summarize: we have defined an algebraic structure on families of trees

which mirrors the algebraic structure of formal expressions in the variables

Ej, but which alleviates the need for computing intermediate expressions

which cancel when the noncommuting Ej's are expressed in terms of the

10
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Figure 5: The term E3EIE_ contributes the first labeled tree and the term

EIE2E3 contributes the second, which cancel.

No. of terms Form of terms

2N 3 coeff. D.i

12N 3 coeff. D.eD.,

4N 3 coeff. D,,_ Do2 D.,

Table 2: Terms in the computation p which cancel.

commuting Dv's. In the following sections, we will see other expressions of

this simple idea.

Algorithm 4.1 can be extended in several different directions.

1. The examples above concern vector fields defined on I_ N. It is possible

to work out similar algorithms for vector fields defined on more general

objects, such as Lie groups. This is important for applications in

robotics and rigid body dynamics. For example, the group G = SO(3)

is the appropriate configuration space for a rotating rigid body. To be

more specific, assume the vector fields are of the form

N

r, = Z
_.=1

where the Y, are left-invariant vector fields on G and the aj are smooth

functions on the group. In this case, the Cayley algebras are generated

by ordered, labeled trees t16]. Roughly speaking, the trees are ordered

since the vector fields It, no longer commute.

. The natural action of differential operators on functions turns the ring

of functions R into a module. In this same way, the trees have a natural

action on R, as indicated in the Diagram 5. It turns out [34] that this

gives R the structure of K/k-bialgebra, as introduced by Nichols [55]

11



and [56]. These types of algebras are closely related to differential

algebras.

. It is a basic fact that the local properties of the nonlinear system { 1) are

determined by the algebraic properties of the higher order iterated Lie

brackets; see, for example, [40]. Unfortunately, due to intermediate

expansion swell, it is often difficult to compute these using current

computer algebra systems. It turns out that higher order Lie brackets

not only involve the cancellation of all terms above the first order but

also the cancellation of some of the first order terms. Algorithm 4.1

can be used so that the terms arising in these first order cancellations

need not be computed.

5 Exponentials, Lie brackets, and nil flows

Some differential equations have the property that their flows can be inte-

grated symbolically in closed form. For example, this holds for differential

equations of the form (1), if E1 and E2 are homogeneous in the appropriate

sense and generate a graded, nilpotent Lie algebra. In this section, we give

an algorithm which, given an appropriate nilpotent Lie algebra, returns vec-

tor fields on I_ N with polynomial coefficients which generate the Lie algebra.

This leads to an interesting class of differential equations whose flows can

be integrated symbolically in closed form. At the end of the section, we look

at several applications of this algorithm.

By the third fundamental theorem of Lie [63], we know that a nilpotent

Lie algebra arises from some Lie algebra of vector fields. What is not obvious

is how to construct such vector fields. Nilpotent Lie algebras of vector fields

have been used as an important tool in partial differential equations by

Folland and Stein [21], Rothschild and Stein [60], and Rockland [61]; and in

control theory by Krener [48], Itermes [41], [42], and Crouch [15], [14]. We

will see below how they are also a useful tool in developing symbolic-numeric

algorithms to integrate flows.

Our goal is to describe a natural representation of nilpotent Lie algebrasJ
on vector fields on Euclidean space with polynomial coefficients. To define

this represenation, we define a basis of Hall trees on generators E1 and E2

recursively as follows:

1. basis elements consist of rooted, binary trees, with all nodes, except

the root, labeled with El, E2, E3 .... satisfying

12



(a) all right childrenare leavesandlabeledwith either Et or E2

(b) tile sequence formed by the labels of the right leaves at increasing

distance from the root is nonincreasing

2. the two rooted trees consisting of a root and a single (left) child labeled

Ei, for i = 1,2 are in the basis and of length 1

,

.

if we have defined basis elements ti of length 1 .... , r - 1, they are

simply ordered so that t, < tj in case the length of ti is less than the

length of t_.

a tree consisting of a root with a single (left) child labeled E, is in the

basis provided that E,'s left child is in the basis and of lower order.

To each such tree corresponds an element E, in the tlall basis [39] of the

free, nilpotent Lie algebra on two generators. Figure 6 illustrates how the

basis of IIall trees leads naturally to a representation of the free nilpotent

Lie algebra generated by El and E2 on the space of vector fields on IZ N

with polynomial coefficients. See [22] for further details of the following

algorithm:

Algorithm 5.1 Fiz r > 1 and say that the free, niipotent Lie algebra of

two generators of rank r has dimension N. Let EI, ..., EN denote the Hall

basis. Then the vector fields on R N defined as in Figure 6 satisfy

I. the Lie algebra they generate is isomorphic to the free, nilpotent Lie

algebra on two generators of rank r

2. any trajectory of the nonlinear system

Z(t) -- El(z(t)) + u(t) E2(x(t)) , z(0) -" _o _ R N,

can be computed in closed form in terms of quadratures of the function

t -

3. there exist constants cq, ..., _N such that
¢

exp(E2)exp(El) = exp oriEl ,

and the ai can be computed by solving a lower triangular linear system.

13
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Figure 6: The vector fields arising from the basis of Hall trees. The first
1 2

tree is sent to DI, while the sum of the trees is sent to D2- xlD3 +ExlD4

- - -_zzz2D_ --_x]z_D8.

14



Asa note.this algorithmwasfoundonly afterseveralmonthsof experimen-
tation with Mapleandrequiredthe carefulstudy of the free, nilpotent Lie

algebra on two generators of rank 5, which is 23 dimensional.

We conclude this section with some remarks describing several applica-

tions of this algorithm and related work.

1. Locally approximating a nonlinear system by an explicitly integrable

nilpotent one yields a number of integration algorithms, which we re-

fer to as piecewzse n:lpotent integration algorithms (PWNI). The basic

idea [23], [2,1] is to approximate locally a nonlinear system at a given

point by an explicitly integrable nilpotent one in which the computa-

tions can be done symbolically in closed form, and to patch together

the various nilpotent approximations at nearby points using a stan-

dard numerical algorithm. Preliminary work indicates that this leads

to symbolic-numeric algorithms for the path planning problem and ef-

ficient algorithms to integrate neighborhoods of trajectories around a

given fixed reference trajectory.

2. Algorithm 5.1 also provides an efficient means for computing the con-

catenation of flows. Write z(t) = exp E.x ° for the flow of the nonlinear

system

i(t) = c(_(t)), _(0) = :, (6)

The Campbell-Baker-Hausdorff formula expresses the concatenation

of two flows as a single flow:

exp(tE2)exp(tEl) = exp(tE2 + tEl + 1/2t2[E_,EI]

+ 1/12[[E2,E_],Z,] - 1/12[[E2,E,], E21+...) (7)

Consider the equation

N

up(E_) exp(E,) = E c_El,
i=1

where El are the vector _ields produced by the algorithm. Since all

flows of the vector fields El and £'2 are explicitly integrable in closed

form, this reduces the computation of the c; to the solution of a linear

system, which is lower triang:ular.

3. We can also use Algorithm 5.1 to derive a class of numerical integra-

tors, which are sometimes known as splitting methods. For example,

15



supposethat E'I and E2 are separately integrable in closed form, but

E! + E_ is not. Then using the algorithm, we can compute constants

7",such that

exp(rTE1) •exp(r6E2) -exp(Ts El )'exp(T4 E2)

• exp(r3El).exp(r2E2), exp(rlEl)" : exp(E! + E2) + O(tS). (8)

This formula yields a numerical integrator for our original nonlinear

system (1) (with u = 1). This algorithm is used in accelerator physics

[65].

4. Recently, Strichartz [69] has shown that the solution of the initial value

problem

z(t)= E(t,z(t)), z(0)=z °

can be written as

with

z(t) = exp(G(t))z °,

.

oo

c(t)~E E c,,,,
r=l G

•/[...{c(s<,), ds,

and where (7ranges over the symmetric group on r symbols, the inte-

gration region is a simplex in R r, E(s) denotes the vector field E(s, .),

and exp is defined as in Equation 6. Formulas of this type date back

to Chen [13] and appear to be related to Algorithm 5.1.

F. Bergeron, N. Bergeron, and A. M. Garsia have also exploited a rela-

tion between trees and polynomials in their study of free Lie algebras;

see [4] and the references cited there.

6 Taylor series and intrinsic integrators

Although nonlinear systems often conserve quantities such as energy or an-

gular momentum, most numerical integrators do not. Similarly, nonlinear

systems typically evolve on some underlying geometric space, such as a Lie

group or homogeneous space, but most numerical integrators do not remain

in such a space.

Recently, there has been a flurry of activity related to numerical in-

tegrators preserving the symplectic structure, sparked off by the work of

16



Channell [10] and Scovel [11], and based upon earlier work of deVogeleaere

[19]. These types of numerical schemes have found important applications in

the long term study of orbits in accelerator physics and in other areas [65].

The derivation of these integrators typically involves the symbolic computa-

tion of Taylor series and generating series for the symplectic transformation

which is the update for the numerical integrator.

Consider a numerical integrator for a differential equation

_(t) = E(t(t)), z(0) = p E M

evolving on a space M. Call a numerical integrator intrinsic in case z,, E M

implies z,_+l E M, for n >_ 1, where t, is the approximation to the trajectory

z(t) at time t,,. One means of deriving intrinsic numerical integrators is

to mimic the derivation of standard numerical integrators, but to impose

additional constraints on the scheme to satisfy the added condition that the

points z,_ rcmain in the space M. This typically involves the careful study

of the Taylor series of the solution.

This can be done by using the Cayley algebra of trees, as briefly indicated

in [32]. As an illustration of this, we consider intrinsic Runge-Kutta type

algorithms evolving on a Lie group G, following [16]. Let g denote its Lie

algebra, and let Yl, .-., YN denote a basis of g . We give an algorithm to

approximate solutions to differential equations evolving on G of the form:

where

z(t) = L'(z(t)), z(0) = p E G,

N

t_.= l

and the = a _ are analytic functions on G. Let exp(tE)- x denote the

solution z(t) at time t. The algorithms depends upon constants ci and %,

for i - 1 .... , k and j < i. For fixed constants, define the following elements

of the Lie algebra g

N

tt=l

/v

= E
/J-----I

N

tt=l

,,"(=.)r,.,E g

a_'(exp(hc21El) • z.)Y. E g

a_(exp(hcs2F-,2) • exp(hcslEl) • x,t)Yu E g...

17



Figure7: Treesassociatedwith third ordertermsin a Taylor series.

These arise by "freezing the coefficients" of E at various points along the
flow of E.

Algorithm 6.1 Given an initial point zo on the group, define

•Ert-,Fl -- exp hc_l_ --.exp hcl Elz,_,

for n >_ O.

Notice that if we assume the exponential exp(hEi) maps the Lie algebra

to the Lie group exactly, then this algorithm is intrinsic. For a group such as

G = SO(3), there are classical closed form expressions for the exponential

map and Algorithm 6.1 yields an intrinsic integrator. Notice also that if G

is the abelian group R N, then the algorithm becomes the classical Runge-

Kutta algorithm.

The first step is to derive the equations that the coefficients ci and cU

must satisfy in order for the algorithm to yield an rth order numerical in-

tegrator. This can easily be done using the Cayley algebra of ordered trees

[16]. The trees are ordered since the vector fields Y_, do not commute.

Assume for the moment that G = I_ N and consider the terms in the

Taylor series

h e h a
z('")

z(t+hl-z(t) = hz(t)+_(t)+_ (t)+...
h 2

= hE+-_.DE.E
h3

/(,DE. OE. E + O'E(E,E/) +tr, m I B I

Notice that there is a natural correspondence between trees and terms in

the series. For example, the h3/3! terms are associated with the two labeled

trees in Figure 7. This observation goes back to at least Cayley [8], [9].

We now generalize this to a Lie group following [16]. Recall that Dia-

gram 5 induces an action of trees on the ring of analytic functions on G.

Using this action, we can now state the

18



Lennna 6.1 Let ot denote the tree conszslln 9 of a root with a single chdd

labeled F. Then for any analytic functzon [ on the 9roup and .(or suOTciently

small t,

/(exp(tF). z) = exp(tm). I [* •

Notice that if G is Euclidean space, and if the functions f are the coordinate

functions xl .... , z., then this becomes the familar Taylor series.

Using this lemma, it is now easy to compute the equations that the

coefficients ci and c, i must satisfy. In spirit, this is similar to Butcher's use

of trees to analyze higher order Runge-Kutta algorithms in Euclidean space

[6], [7].

References

[1] tl. Abelson and G. J. Sussman, Dynamicists' Workbench [: "Auto-

matic Preparation of Numerical Experiments," R. Grossman, editor,

Symbolic Computation: Applications to Scientific Computlnq, SIAM,

1989.

[2] 11. Abelson, M. Eisenberg, M. llalfant, J. Katzenelson, E. Sacks, G.

Sussman, J. Wisdom, and K. Yip, "Intelligence in Scientific Comput-

ing," Communications ACM, Voi. 32, pp. 546-562, 1989.

[3] J. Apel and W. Lassner, "An extenstion of Buchberger's algorithms

and calculations in enveloping algebras of Lie algebras," J. Symbolic

Computation, Vol. 6, pp. 361-370, 1988.

[4] F. Bergeron, N. Bergeron, and A. M. Garsia, "ldempotents for the

free Lie algebra and q-enumeration," lnvariant Theory and Tableauz.

D. Stanton, editor, Springer-Verlag, New York, pp.166--190, 1990.

[5] G. W. Bluman and J. D. Cole, Similarity Methods for Differential

Equations, Springer-Verlag, New York, 1974.

[6] J. C. Butcher, "An order bound for Runge-Kutta methods," SIAM J.

Numerical Analysis, Vob 12, pp. 304-315, 1975.

[7] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equa-

tions, John Wiley, 1986.

[8] A. Cayley, "On the theory of analytical forms called trees", Collected

Mathematical Papers of Arthur Cayley, Cambridge University Press,

Vol. 3, pp. 242-6, 1890.

19



[9] A. Cayley,"On theanalyticalformscalledtrees,secondpart", in Col-

lected Mathematical Papers of Arthur Cayley, Cambridge University

Press, Vol. 4, pp. 112-5, 1891.

[10] P. Channell, "Sympletic Integration for Particles in Electric and

Magnetic Fields," Accelerator Theory Note No. AT-6:ATN-86-5, Los

Alamos National Laboratory, 1986.

[I 1] P. Channell and C. Scovel, "Sympletic Integration of ttamiltonian Sys-

tems," submitted for publication.

[12] B. Char, "Using Lie transformation groups to find closed form so-

lutions to first order ordinary differential equations," SYMSAC 'SI:

Proceedings of the 1981 AC3I Symposium on Symbolic and Algebratc

Computation, P. Wang, editor, ACM Press, pp. 44-50, 1981.

[13] K. T. Chen, Integration of paths, geometric invariants and a gener-

alized Baker-ffausdorff forrnula, Annals of Mathematics, Vol. 65, pp.

163-178, 1957.

[14] P. E. Crouch, "Dynamical Realizations of Finite Voiterra Series,"

SlAM Journal of Control and Optimization, Vol. 19, pp. 177-202, 198l.

[15] P. E. Crouch, "Graded and Nilpotent Approximations to Input-

Output Systems, Nonhnear Controllability and Optimal Control, It.

J. Sussmann, editor, Marcel Dekker, New York, pp. 383-430, 1990.

[16] P. Crouch, R. Grossman, and R. Larson, "'Frees, bialgebras, and intrin-

sic numerical integrators," Laboratory for Advanced Computing Tech-

nical Report, Number LAC90-R23, University of Illinois at Chicago,

May, 1990.

[17] J. Della-Dora and E. Tournier, "Formal solutions of linear difference

equations: method of Pincherle-Ramis," Proceedings of the 1986 Sym-

posium on Symbolic and Algebraic Computation, ACM Press, New

York, 1986.
I

[18] A. Deprit, "Canonical Transformations Depending on a Small Param-

eter," Celestial Mechanics, Vol. 1, pp 12-30, 1969.

[19] R. deVogelaere, "Methods of integration which preserve the contact

transformation property of the Hamiltonian equations," Department

of Mathematics, University of Notre Dame Reporl Vol. 4.

20



[20]A. J. Dragt and J. M. Finn, "Lie Seriesand lnvariant Functionsfor
AnalyticSymplecticMaps," J. Math. Physics, Vol. 17, pp. 2215-2227,

1976.

[21] G. B. Folland and E. M. Stein, "Estimates for the o6bcomplex and anal-

ysis of the Ileisenberg group," Communications in Pure and Applied

Mathematics, Voi. 27, pp. 429-522, 1974.

[22] M. Grayson and R. Grossman, "Models for free, nilpotent lie algebras,"

J. Algebra, Vol. 35, pp. 177-191, 1990.

[23] M. Grayson and R. Grossman, "Nilpotent Lie algebras and vector

fields." Symbolic Computation: Applications to Scientific Compulinq,

R. Grossman, editor, SIAM, Philadelphia. pp. 77-96, 1989.

[24] M. Grayson and It. Grossman, "The simultaneous integration of

trajectories using niipotent normal forms." Laboratory for Advanced

Computing Technical Report, Number LAC90-R19, University of Illi-

nois at Chicago, May, 1990.

[25] W. GrSbner, Die Lie-Reihen Und lhre Anwendungen, Veb Deutscher

Verlag der Wissenschaften, Berlin, 1967.

[26] W. Gr6bner and I1. Knapp, Contributions to the Method of Lie Ser_es,

llochschulskripten Bibliographisches Institut, Mannhiem, 1967.

[27] R. Grossman and R. Larson, "Itopf algebraic structures of families of

trees," J. Algebra, Voi. 26, pp. 184-210, 1989.

[28] R. Grossman and R. Larson, "Labeled trees and the algebra of differen-

tial operators," Algorithms and Graphs, B. Richter, editor, American

Mathematical Society, Providence, pp. 81-87, 1989.

[29] R. Grossman and R. Larson, "Labeled trees and the efficient computa-

tion of derivations," in Proceedings of I989 International Symposium

on Symbolic and Algebraic Computation, ACM, pp. 74-80, 1989.

[30] R. Grossman and R. Lar_on, "Solving nonlinear equations from higher

order derivations in linear stages," Advances in Mathematics, Vol. 82,

pp. 180-202, 1990.

[31] R. Grossman, "The evaluation of expresssions involving higher order

derivations," Journal of Mathematical Systems, Estimation, and Con-

trol, Vol. 1, 1990.

21



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[4o]

{41]

R. Grossman and R. Larson, "Itopf-algebraic structure of combinato-

rial objects and differential operators," Israeli J. Math., to appear.

R. Grossman and R. Larson, "The symbolic computation of deriva-

tions using labeled trees," Laboratory for Advanced Computing Tech-

nical Report Number LAC90-R09, University of Illinois at Chicago,

January, 1990.

R. Grossman and R. Larson, "Bialgebras of trees and differential oper-

ators." Laboratory for Advanced Computm9 Technical Report Number

LACg0-R22, University of Illinois at Chicago, August, 1990.

J. Guckenheimer and S. Kim, Kaos, to appear.

V W Guillemin and S. Sternberg, "Infinite dimensional primitive Lie

algebras." Journal of Differential Geometry, Vol. 4, pp. 257-282, 1970.

V. W. Guillemin, "An algebraic model of transitive differential ge-

ometry," Bulletin of the Amernean Mathematical Society, Vol. 70, pp.

16-47, 1964.

C. Guoting, "Gr6bner bases in rings of differential operators," Re-

search Reprints of the Institute of Systems Science, Academica Sinica,

Beijing, 1989.

M. llall, "A basis for free Lie rings and higher commutators in free

groups," Proc. elmer. Math. Soc., Vol. 1, pp. 575-581, 1950.

R. Ilermann and A. J. Krener, "Nonlinear controllability and observ-

ability'," IEEE Trans. Automatic Control, Vol. AC-22, pp. 728-740.

tl. Ilermes, "Control systems which generate decomposible Lie alge-

bras." J. Diff. Eqns., Vol. 44, pp. 166-187, 1982.

[42] II. llermes, "Niipotent approximations of control systems and distri-

butions," SIAM J. Control Optim., Vol. 24, pp. 731-736, 1986.
i

[43] H. Ilermes, A. Lundell, and D. Sullivan, "Nilpotent bases for distribu-

tions and control systems," J. Diff. Equations, Vol. 55, pp. 385-400,

1984.

[44] S. A. Joni and G.-C. Rota, "Coalgebras and bialgebras in combina-

tortes," Stud. Appl. Math., Vol. 61, pp. 93-139, 1979.

22



[4.5]

[46]

[47]

[48]

[,19]

[.5o]

[.51]

[.52]

[.53]

A. Jo.val, "'Une theorie combinatorire des series formelles," Advances

in Mathematics. Vol. ,12, pp. 1-82, 1981.

II. Nnapp and G. Wanner "Numerical solution of ordinary differential

equations by Grinner Lie series method," Mathemtical Research Center

Report No. 880, University of Wisconson, Madison, 1968.

I1. Knapp and G. Wanner "LIESE, a program for ordinary differential

equations using Lie series," Mathemtical Research Center Report No.

881, University of Wisconson, Madison, 1968.

A. Nrewer, "Bilinear and nonlinear realizations of input-output maps,"

SIAM J Control Optim, Vol. 13, pp. 827-834, 1975.

G. I,abelle, "Une novelle demonstration combinatorie des formules

d'invorsion de Lagrange," Advances in Mathematics, Vol. 42, pp. 217-

2,t7, 1981.

P. Lcroux and X. G. Viennot, "Combinatorial Resolution of Systems

of Differential Equations, I. Ordinary Differential Equations," Leer.

Notes zn Maths., Vol. 1234, Springer-Verlag, New York, pp. 210-245,

1986.

S. Lie, "Zur theorie des integrabilitetsfaktors," Christiania Forh., pp.

242-25,1, 1874. Reprinted Gesamm. Abh., Vol. llI, Number XIII, pp.

176-187.

S. Lie. Sophus Lie's 1880 Transformation Group Paper, translated by

Michael Ackerman, comments by Robert Itermann, Math Sci Press,

Brookline, .Massachusetts, 1975.

S. Lie. Sophus Lie's 1884 Differential [nvariant Paper, translated by

Michael Ackerman, comments by Robert Ilermann, Math Sci Press,

Brookline, .Massachusetts, 1976.

[54] K. R. 3leyer, "Lie transform tutorial-II," to appear.
¢

[55] W. Nichols and B. Weisfeiler, "Differential formal groups ofJ. F. Pdtt,"

American J. Mathematics, Vol. 104, pp. 943-1003, 1982.

W. Nichols, "The Kostant structure theorems for K/k-ttopf algebras,"

J. Algebra, Vol. 97, pp. 313-328, 1985.

23



[57]

[58]

[sg]

[6o]

[61]

[62]

[63]

[64]

[6_]

[66]

[67]

[68]

P. OIver, Applications of Lie Groups to Differential Equations,

Sprmger-Verlag, New York, 1986.

J. P Ramis and J. Martinet, "The6rie de Galois diff_rentielle et re-

sommation," Computer Algebra and Differential Equatzons, edited by

E. Tournier, Academic Press, San Diego, pp. 117-214, 1989.

R. II. Rand and D. Armbruster, Perturbation Methods, Bifurcation

Theory and Computer Algebrtl, Springer-Verlag, New York, 1987.

L. P. Rothschild and E. M. Stein, "llypoelliptic differential operators

and nilpotent groups," Acta Mathematica, Vol. 37, pp. 248-315, 1977.

C. Rockland, "Intrinsic nilpotent approximation," Acta Applicandae

3Iath., Vol. 8, pp. 213-270, 1987.

G.-C. Rota, D. Kahaner, and A. Odlyzko, "Finite Operator Calculus,"

J. Mathematics and its Applications, Vol. 42, pp. 685--760, 1973.

W. Schmid, "Poincar6 and Lie groups," Proceedings of Symposia zn

Pure Mathematics, Vol. 39, Part I, The Mathematical Hemtage of

Henrl Poincard, F. E. Browder, editor, AMS, Providence, pp. 157-

168, 1983.

F. Schwarz, "Symmetries of Differential Equations: From Sophus Lie

to Computer Algebra," Siam Review, Vol. 30, pp. 450-481, 1988.

C. Scovel, "Symplectic Numerical Integration of Hamiltonian Sys-

tems," Proceedings of the MSRI Workshop on the Geometry of Hamtl-

tonian Systems, to appear.

R. Shtokhamer, N. Glinos and B. F. Canviness, "Computing elemen-

tary first integrals of differential equations," to appear.

M. F. Singer, "An outline of differential galois theory," Computer Al-

gebra and Differential Equations, edited by E. Tournier, Academic

Press, San Diego, pp. 3--67, 1989.

S. Steinberg and P. J. Roache, "Using Macsyma to Write Fortran

Subroutines," Journal of Symbolic Computation, Voi. 2, pp. 213-228,
1986.

24



[69] R.S.Strichartz,"TheCampbelI-Baker-Iiausdorff-Dynkinformulaand
solutionsof differentialequations,"Journal of Functional Analysis,

Vol. 72, pp. 320-345, 1987.

[70] M. Takeuchi, "A Hopfalgebraic approach to Picard-Vessiot theory,"

to appear.

[71] G. Viennot and P. Leroux, "A Combinatorial Approach to Nonlinear

Functional Expansions: An Introduction with Example," Algebrazc

and Computing Treatment of Noncommutative Power Series, G. Jacob

and C. Reutenauer, editors, Theoretical Computer Science, 1990.

[72] P. Wang, "FINGER: A symbolic system for automatic generation of

Ilumerical programs m finite element analysis," Journal of Symbohc

Comprltat,on. Vol. 2, pp. 305-324, 1986.

[73] R. Zippel, "Automation of Numerical ODE Solving Techniques," to

appear.

25


